The Saccharomyces Ty5 retrotransposon family is associated with origins of DNA replication at the telomeres and the silent mating locus HMR.

نویسندگان

  • S Zou
  • D A Wright
  • D F Voytas
چکیده

We have characterized the genomic organization of the Ty5 retrotransposons among diverse strains of Saccharomyces cerevisiae and the related species Saccharomyces paradoxus. The S. cerevisiae strain S288C (or its derivatives) carries eight Ty5 insertions. Six of these are located near the telomeres, and five are found within 500 bp of autonomously replicating sequences present in the type X subtelomeric repeat. The remaining two S. cerevisiae elements are adjacent to the silent mating locus HMR and are located within 500 bp of the origin of replication present in the transcriptional silencer HMR-E. Although the S. cerevisiae Ty5 elements no longer appear capable of transposition, some strains of S. paradoxus have numerous Ty5 insertions, suggesting that transposition is occurring in this species. Most of these elements are adjacent to type X telomeric repeats, and regions flanking four of five characterized S. paradoxus insertions carry autonomously replicating sequences. The genomic organization of the Ty5 elements is in marked contrast to the other S. cerevisiae retrotransposon families (Ty1-4), which are typically located within 500 bp of tRNA genes. For Ty3, this association reflects an interaction between Ty3 and the RNA polymerase III transcription complex, which appears to direct integration [Chalker, D. L. & Sandmeyer, S. B. (1992) Genes Dev. 6, 117-128]. By analogy to Ty3, we predict that Ty5 target choice is specified by interactions with factors present at both the telomeres and HMR that are involved in DNA replication, transcription silencing, or the maintenance of the unique chromatin structure at these sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae.

The Saccharomyces retrotransposon Ty5 integrates preferentially into transcriptionally inactive regions (silent chromatin) at the HM loci and telomeres. We found that silent chromatin represses basal Ty5 transcription, indicating that these elements are encompassed by silent chromatin in their native genomic context. Because transcription is a requirement for transposition, integration into sil...

متن کامل

Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p.

Retrotransposon and retroviral insertions are not randomly distributed on chromosomes, suggesting that retroelements actively select integration sites. This is the case for the yeast Ty5 retrotransposons, which preferentially integrate into domains of silent chromatin at the HM loci and telomeres. Here we demonstrate that loss of Sir3p or Sir4p-components of silent chromatin-causes a greater th...

متن کامل

The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends.

Retrotransposons are ubiquitous components of eukaryotic genomes suggesting that they have played a significant role in genome organization. In Saccharomyces cerevisiae, eight of 10 endogenous insertions of the Ty5 retrotransposon family are located within 15 kb of chromosome ends, and two are located near the subtelomeric HMR locus. This genomic organization is the consequence of targeted tran...

متن کامل

Silencers, silencing, and heritable transcriptional states.

Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequenc...

متن کامل

The DNA end-binding protein Ku regulates silencing at the internal HML and HMR loci in Saccharomyces cerevisiae.

Heterochromatin resides near yeast telomeres and at the cryptic mating-type loci, HML and HMR, where it silences transcription of the alpha- and a-mating-type genes, respectively. Ku is a conserved DNA end-binding protein that binds telomeres and regulates silencing in yeast. The role of Ku in silencing is thought to be limited to telomeric silencing. Here, we tested whether Ku contributes to s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 1995